oyt

JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 72, No. 3, MARCH 1992

Deflated Krylov Subspace Methods
for Nearly Singular Linear Systems’
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Abstract. This paper concerns the use of Krylov subspace methods
for the solution of nearly singular nonsymmetric linear systems. We
show that the incomplete orthogonalization methods (IOM) in conjunc-
tion with certain deflation techniques of Stewart, Chan, and Saad can
be used to solve large nonsymmetric linear systems which are nearly
singular.
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1. Introduction

This study concerns the use of Krylov subspace methods for the solution
of nearly singular linear systems. There are many problems in numerical
analysis which require the solution of nearly singular linear systems. For
example, in the solution of nonlinear systems by homotopy continuation
methods (Ref. 1), or in nonlinear eigenvalue problems (Ref. 2), one often
has to solve nearly singular linear systems. Another example arises in
constrained optimization problems (Ref. 3) where the constraints may be
nearly linearly dependent. Other examples include compartmental models
(Ref. 4) and decomposable Markov chains (Ref. 5). We focus on a problem
from seismic processing known as the velocity inversion problem (Ref. 6).

The goal of the velocity inversion problem is to determine certain
parameters describing the Earth from data taken at or near the surface. The
data is known as a seismogram, and we wish to determine the sound speed
structure of the Earth from these measurements. Given that we have a
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functional relation defined by F(c)=s, where c is the speed of sound in
the Earth and s is a seismogram, the inverse problem is: given s, solve for
c. Since the seismogram is usually contaminated with noise, we actually
solve a nonlinear least-squares problem, min J = ||s — F(c)|, for a suitable
class of ¢

A nopular choice for the solution of nonlinear least-squares problems

A pUp UG wiaLive iU WA St 1OIEITR

is the Gauss-Newton method (Ref. 7). This method ¢ mputes a sequence
of iterates from the formulas

(J(e) T (c)YAe = =T (c) TF(cx), (1)

Cee1= Cx+AC, (2)
for k=0,1,..., starting from an initial guess or model ¢, for the sound
speed structure. In the context of the velocity inversion problem, the ele-
ments of the Jacobian matrix J(c,) are not readily available. However, it
can be shown that the Jacobian matrix acting on a vector can be computed
from the solution of a certain boundary-value problem. Similarly, the
transpose of the Jacobian acting on a vector can be computed from the
solution of a related boundary-value problem. The solutions of the two
boundary-value problems are independent, which results in a linear system
that is almost symmetric. The Gauss-Newton Hessian J(c;) TI1(¢,) would
be symmetric, except that the solution of the two boundary-value problems
which define the Jacobian matrix and its transpose can only be solved up
to some nonsymmetric discretization error.

The linear systems (1) that arise in the solution of the velocity inversion
problem by the Gauss-Newton method are usually very large; and since
the matrix elements are not readily available, the only recourse is to use an
iterative technique for the solution of the linear systems. Additionally, due
to the physics of the problem, the linear systems may be ill-conditioned
either by having several large singular values or by having several small
singular values (Ref. 6). The small singular values arise because the initial
data are band-limited. Perturbations in the model problem corresponding
to frequencies outside the passband of the input data are simply not seen
by the model. The large singular values are also inherent in this formulation
of the problem.

In this study, we address the issues of computing the solution to the
linear systems (1) by using an iterative technique which computes the
solution in the space spanned by the orthogonal complement of the singular
vectors corresponding to the small singular values.

Several methods have been proposed for solving nearly singular li
systems. Consider the system of linear equations

Ax=0b, (3)
where x and b are n-dimensional vectors and A is an n X n real matrix

| R
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which has rank n. We denote the set of singular values by
o(A)={0(A),...,0,(A)}.

The singular values are ordered so that
O\ Z 0= " 20,

The solution to (3) can be written as
x=x4+(unb/a,)v,, (4)

xa='3 (u]b/a)v, ®)

where the vectors u and v are left and right singular vectors of A, respectively.
The vector x, is called the deflated solution to (3), and (4) is called the
deflated decomposition. There are many definitions of the deflated solution.
Chan (Ref. 8) defines deflated solutions of (3) as solutions to nearby singular
but consistent systems derived from (3). The choice of the nearby system
will greatly affect the deflated solution. For example, one might choose the
nearest singular matrix to A in the Frobenius norm and pick the deflated
solution to be the one with minimum norm. It is well known that this choice
amounts to setting the smallest singular value of A equal to zero in the
singular value decomposition of the matrix A.

In certain applications (Ref. 9), it is preferable to compute the decompo-
sition (4). In other applications, the deflated solution is the only solution
of interest. Notice that, if the eigenvector u, were known, then both (4)
and (5) could be computed by first computing x and then orthogonalizing
against u,. However, even if the eigenvector u, were known, this approach
is not advisable because it usually results in a poor approximation to x,
due to-roundoff errors. In particular, if the component of the solution in
the direction of the null eigenvector is large, then errors in that component
tend to dominate the solution in the other directions.

Stewart (Ref. 10) suggested a method for computing the deflated
solution of (3) by an implicit method. This method uses orthogonal projec-
tions constructed from approximations to the singular vectors of the matrix
A corresponding to the smallest singular value. The disadvantage of this
method is that it requires a direct method for the solution of (3). Chan and
Saad (Ref. 11) proposed a deflated Lanczos method for symmetric, positive-
definite linear systems which only requires the matrix-vector product Ax.
The goal of this paper is to study methods for computing the deflated

solution for large sparse nonsymmetric linear systems which are nearly
singular.

The basic idea is to use one of the Krylov subspace methods proposed
by Saad (Ref. 12) for solving nonsymmetric linear systems. These methods
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compute an approximation to the solution by generating iterates which lie
in a certain Krylov subspace. The approximations to the solution are then
computed by solving a linear system described by a smalil upper Hessenberg
matrix H, produced by Arnoldi’s method (Ref. 13).

Arnoldi’s method may be thought of as a Galerkin process for
approximating the eigenvalues of A by the eigenvalues of the upper Hessen-
berg matrix H. Like the Lanczos method, the approximations to the eigen-
values tend to be best at the extremes of the spectrum, so that the matrix
H may be expected to also be nearly singular. Therefore, one disadvantage
to using the methods proposed by Saad is that they could require the solution
of a nearly singular linear system. Unlike the original system (3), however,
we need only to be able to solve linear systems involving the much smaller
matrix H, We can then use the deflation techniques suggested by Stewart
and Chan. In addition, we propose another method based on solving a
truncated least-squares problem, analogous to the GMRES method sug-
gested by Saad and Schultz (Ref. 14).

2. Krylov Subspace Methods

Saad (Ref. 12) proposed a class of methods for solving large sparse
nonsymmetric linear systems based on the Arnoldi process (Ref. 13) for
computing the eigenvalues of a matrix. Arnoldi’s method is a generalization
of the Lanczos method (Ref. 15) for nonsymmetric matrices, and when
it is applied to a symmetric matrix it reduces to the Lanczos method.
Like the Lanczos method, Arnoldi’s method is best viewed as an iterative
method for approximating the eigenvalues of large sparse matrices. In
essence, Arnoldi’s method is just the Gram-Schmidt method for com-
puting an orthonormal basis for the Krylov subspace Km(wy, A)=
span{w,, Aw,, ..., A" 'w,}. The method can be described as follows.

Algorithm 2.1. Arnoldi’s Method.
Step 1. Choose w, such that ||w,||=1.
Step 2. Forj=1,2,..., compute
hi = (Aw;, w;), i=1,2,...,J
j

o
Wi =A"Vj_ hX hijwi,
i=1

=
hj+1,j= HW;HII,

N
Wier = Wist/ Bjer -
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If we let
W, =[wy, Wa,..., Wl
then it is easy to show that
H,=WZLAW,, ( - (6)

where the entries of the upper Hessenberg matrix H,, are the scalars hy
produced by Arnoldi’s method after m steps.

As Saad (Ref. 12) has shown, Arnoldi’s method may be used as a basis
for a class of Krylov subspace methods for solving large sparse nonsym-
metric linear systems. By a Krylov subspace method, we mean any method
that approximates the solution to the linear system (3) by generating iterates
of the form

Xm sz+ Zms

where x, is an initial guess, z,, € k,(ro, A), and ro=5b — Ax,. If we carry
out m steps of Arnoldi’s method starting with w, = ry/ || 7o), and if we impose
the Galerkin condition that the residuals at each iteration be orthogonal to
Km(re, A), then this yields

WIAW,.ym— Wire=0.
Using the relation (6) yields
X = Xo+ Wi Vins
where y,, solves the system
Hmym/ = |rolley, (7)

and
e,=(1,0,...,00"

This defines the full orthogonalization method (Ref. 12) for solving (3).

Algorithm 2.2. Full Orthogonalization Method.
Step 1. Choose xo, and compute ro=b—Ax,y. Set w; = ro/ || roll.
Step 2. Forj=1,2,...,k compute
hl'j=(AM}jswl')3 i=1,2""’j’
J
Wi =Aw;— ¥ hyw,,
i=1
By = Wil

”
Wi = Wj+1/ hj+1,j-
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Step 3. Solve Hyy. = 1ol es.
Step 4. Set x, = x5+ Wiy

In practice, the number of iterations is chosen so that the approximate
solution x; is sufficiently accurate. Usually, this is measured by requiring
that the initial residual be decreased by a user-specified amount. Fortunately,
the residual at any iteration may be computed without actually computing
the solution to (3) through the relation (Ref. 12)

"b_Axk" = hk+1,kle:yk‘- (8)

Although the computation of the residual by (8) requires solving N
for y, there are ways to circumvent this computation by carrying an LU
or QR factorization of H throughout the Arnoldi process. If, after k
iterations, the approximate solution has not converged, then it is possible
to restart the algorithm using the current estimate of x as the new initial
guess. This method is denoted by FOM(k) or the restarted FOM.

It is well known that the Arnoldi process may be viewed as a Galerkin
process for estimating the eigenvalues of a matrix. In particular, if we apply
Algorithm 2.2 to a linear system that is nearly singular, then the upper
Hessenberg matrix H,, which is generated after k steps of the Arnoldi
process, will probably have a small eigenvalue. Therefore, if we solve (7)
for y, in the straightforward way, our computed solution will be inaccurate

for the reasons indicated in Section 1.

' Fortunately, computing the deflated solution of (7) is easier than
computing the deflated solution of (3). Since the matrix Hj has dimension
k<« n, the solution of (7) is at least computationally easier. Moreover,
the matrix elements of H, are on hand, whereas the matrix elements of
A are not available. The next section describes some of the deflation
techniques which can be used to compute the deflated solution of (7) in a
stable manner.

3. Deflation Methods

This section describes three methods for computing the deflated sol-
ution to a nearly singular linear system. In particular, we consider the linear
system

Hy=/, 9)

where y and f are k-dimensional vectors and H; is the upper Hessenberg
matrix generated after k steps of Arnoldi’s method. Further, we assume
that H, is nearly singular with a rank deficiency of at most one. The
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extensions to null spaces of dimensions greater than one will be treated in
a later section.

The first method, which uses orthogonal projections, was proposed by
~ Stewart (Ref. 10). The second method is a generalization of a technique
suggested by Chan and Saad (Ref. 11) for symmetric positive-definite
systems. In essence, this method uses a QR iteration to decouple the linear
system into a well-conditioned problem plus a component corresponding
to the small eigenvalue. The third method computes the deflated solution
by solving a truncated least-squares problem.

3.1. Deflation by Orthogonal Projection. Stewart (Ref. 10) proposed
an implicit method for computing the deflated solution to a nearly singular
linear system. His algorithm consists of constructing two orthogonal projec-
tors defined by approximations to the singular vectors corresponding to the
small singular value.

Consider the right and left singular vectors, respectively v and u,
corresponding to the smallest singular value of Hy. Define the orthogonal
projectors

P,=I—-uu”™ and P,=I-wvo".
The projector P,(P,) is merely the orthogonal projector onto the orthogonal

complement of the space spanned by u(v). It is easy to show that the
deflated solution to (9) is the unique vector satisfying the relations

PquPuyd =Puf; (10)
P,ys = ya- (11)

Stewart suggests using the following algorithm based on iterative refinement
to solve for y,.

Algorithm 3.1. Deflation by Orthogonal Projection.
Step 1. Set y=0.
Step2. Fork=1,2,...,

solve Hyd = P,(f— H,y);

set y=y+ P,d.

Step 3. Sety,=y.

Since the singular vectors are not known, Stewart suggests approximat-
ing u and v by a variant of the inverse power method. In the case of interest,
where the small singular value is isolated, the inverse power method is
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known to converge rapidly. Stewart also gives conditions, which depend
on the accuracy attained in the approximation to the vectors u and v, under
which Algorithm 3.1 will converge to the deflated solution of (9).

3.2. Deflation by QR Iteration. The second method for computing the
deflated solution is a generalization of a method proposed by Chan and
Saad (Ref. 11) for symmetric, positive-definite systems. To motivate the
discussion, assume that we have the pair (A4, u) of the unreduced upper
Hessenberg matrix H,. It is well known that one step of the shifted QR
iteration method with a shift of A, reduces the matrix H, so that the
eigenvalue A, appears on the diagonal and the corresponding subdiagonal
element is zero. The linear system (9) can then be decoupled so that it is
easily solved for the deflated solution.

In particular, assume that we compute the matrix H M by the following
two-step procedure:

Step 1. Compute the QR factorization of H, —A.lL
Step 2. Form HW=RQ+A,L

Then, the matrix H" takes on the form

k-1 1
o k- 1[ b4 ﬁ]
1 0 AJ

where H is an upper Hessenberg matrix of order k—1. It is easy to show
that )

H®=Q"H,Q,
so that we can transform (9) into

HYz=7 , (12)
where

y=Qz and f=Qf

If we partition the vectors z and f so that

_1*& 2_ fl
<2} 1)

hen the deflated solution to (12) is

zg = [H;fl]. ) (13)

The deflated solution to (9) can now be computed from y; = Qz,.
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There are two remarks in order. The first is that in general we do not
know the eigenvalue A.; however, as in the previous section, we may
compute an approximation to A, by using the inverse power method. The
second remark is that, even if we had an exact value for A, in practice the
matrix H, will not be reduced in one QR iteration step. Wilkinson (Ref.
16) suggests iterating with the shifted QR method until the element on the
subdiagonal has converged to zero. We use the test

IHO 2/ H <€ (14)

to check for convergence. Two or three iterations are usually sufficient to
satisfy (14). This leads to the following algorithm.

Algorithm 3.2. Deflation by QR Iteration.
Step 1. Compute A, from H, via inverse iteration.
Step2. H®=H,.

Step 3. For j=0,1,...,until convergence:
compute the QR factorization of H CLE W 5
compute HY*V=RQ+A,L

Step 4. Set z; =[H'f,,0]".
Step 5. Set y; = Qz,.

If the dimension of the null space is greater than 1, then the issues
become more complicated. There are two cases to consider: a small eigen-
value of multiplicity greater than 1 and the case of several distinct small
_ eigenvalues. The case of a small real eigenvalue with a multiplicity greater
- than 1 is easily handled, since the shifted QR method will still converge.
The case of several distinct small eigenvalues is harder to address since the
QR method does not guarantee that the converged eigenvalues will appear
in any particular order on the diagonal of H W A related issue is that of
complex eigenvalues. Since the inverse power method converges to the
eigenvalue of smallest modulus, we must be careful in choosing the shift.
A good choice would be to use Francis’ implicit double shift QR method
and with a shift as described by Wilkinson (Ref. 16).

3.3. Deflation by Truncated Least Squares. The last method that we

discuss is derived from a technique for solving rank-deficient least-squares
problems (Ref. 17, pp. 162-167). The general idea in these problems is to
compute a QR factorization of the nearly singular matrix H,, such that the
elements on the diagonal of the matrix R display the rank deficiency. The

solution to the linear system (9) is then computed by setting the small
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diagonal elements of the matrix R equal to zero and solving a truncated
least-squares problem.

Assume that the matrix Hj has exactly one zero eigenvalue and consider
its QR factorization,

H II=QR,
where II is a permutation matrix chosen so that the matrix R has the form
k-1 1
k-1{ R, Ru]
R=
1 [ 0 0y

where R,; is upper triangular.
In this case, the least-squares solution to (9) can be easily computed.
In fact,

"Hky —f”z: ||R1121 _(fAl _Rlzzz)"2+ ||f2||2,

where
'y = [Z] (15)
2
or=[ %] (16)
1
if we set z, =0, then the solution is given by
. [R3 ] |
=11 . 17
y [ 0 (17)

The vector j is called the basic solution. In general, it is not the least-norm
least-squares solution unless R;>=0.

In practice, the matrix H, will never have an eigenvalue exactly equal
to zero. The question is then to determine the rank of the matrix H, from
the elements of R. One popular choice is the method of column pivoting
implemented in LINPACK (Ref. 18). This method is usually reliable in
detecting the rank deficiency of a matrix, although there are counterexamples
where the method may fail. Chan (Ref. 19) suggested another method for
producing a QR factorization which guarantees a small R,, element. The
essential ideas can be explained in the case of a rank-one deficient matrix.
First, we need the following theorem proved by Chan (Ref. 19).

Theorem 3.1. Suppose that xeR" with [x]| =1 such that |Ax||=¢.
Let TI be a permutation such that, if TI'x =y, then |y,|=||y|lw. Then, if
AIl = QR is the QR factorization of AIl, we have

[Punl =Vne.
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The usefulness of this theorem is apparent if we consider the right
singular vector v of the matrix H, corresponding to the smallest singular
value oy. Then, we have

lvof|=1 and |Hwl=o0.
If we define the permutation II by
[T )il =vllw,

thert H,I1 = QR has a pivot r,,,, at least as small as vmo,, in absolute value.
As in Stewart’s method, all that is required is an approximation to v, which
may be computed by the inverse power method. This suggests the following
algorithm for solving (9).

Algorithm 3.3. Deflation by Truncated Least Squares.

Step 1. Compute the QR factorization of Hy.

Step 2. Compute v and oy from H, via inverse power method.
Step 3. Compute II so that |(T1"0)i] = || 0]-

Step 4. Compute the QR factorization of H,IIL.

Step 5. Compute $=TI[R}; £, 01"

This method has the obvious advantage of being immediately applicable

to null spaces with a dimension greater than 1. However, the question of

_rank deficiency is still a hard problem and the user must be able to supply
a tolerance which specifies the amount of ill-conditioning allowed.

" 4, Numerical Results

This section presents several numerical experiments comparing the
various methods described in Section 3.
Recall that the linear system of interest is

Ax=b,

where x and b are n-dimensional vectors and A is an nxn real matrix
which is nearly singular. All of the numerical results presented here are for
linear systems of order 10. The results are similar for larger systems. The
numerical experiments were run on a Sun 3/160 computer, using single
precision arithmetic (machine epsilonz10_7). The method was said to
converge whenever

7 =107+ iro]l.
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The basic method used was the restarted FOM(k). To avoid the issue of
deciding when the eigenvalues of the upper Hessenberg matrix H are good
approximations to the eigenvalues of the matrix A, we set k=n.

Problem 1. The first test case was a small perturbation to a symmetric,
positive-definite matrix. Define

A(e)=D+€E.
The matrix D is defined by
D =diag(107,2,3,...,n),

and I varies from 1 to 7. The nonsymmetric perturbations are generated
using the random number generator URAND from IMSL. The matrices E
are computed by generating uniform random numbers between [—0.5, +0.5],
and normalizing so that ||E|,= 1. The amount of nonsymmetry can then
be adjusted by varying €. We set € =107,

Problem 2. The second set of test cases was picked from a study done
by Chan and Saad (Ref. 11). In this set of problems, we set

A=(I-uu"YD(I~wvv"),

where u and v were chosen randomly with the constraint that they have
norm one. The matrix D was chosen as in Problem 1.

Problem 3. The purpose of the third problem is to simulate a typical
linear system arising in the velocity inversion problem. These problems
usually have one or more small singular values and one or more large
singular values with the rest of the spectrum fairly well-conditioned. In this
problem, we set the matrix

D =diag(1077,1,. .., 3,3000),

with the values of d, through d,_, varying uniformly between 1 and 3. The
matrix A is then computed as in Problem 1. This example generates a
well-conditioned problem if the small and large eigenvalues are excluded,
which is typical of some of the velocity inversion problems.

The four methods described so far are:

Method 1. Full orthogonalization method (FOM).

Py
™
2

o
3
1
-
3

ey

Aoal 1 T 1T madle mvmn Boatiannm mmatha =73
Vieinoad <. ruu Ui'tuusuuauz.auuu lllCthUd, Wi

projection deflation (FOMOP).

Method 3. Full orthogonalization method with the truncated least-
squares deflation (FOMLSQ).
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—{ FOM

101 —o— FOMOP
—8— FOMLSQ
FOMQRI

Residual

Fig. 1. Norm of the residual, Problem 1.

Method 4. Full orthogonalization method, with the QR iteration
deflation (FOMQRI).

In addition, we also tested an algorithm based on computing the
solution to the linear system by the full orthogonalization method and then
computing the deflated solution by orthogonalizing against the null vector.
This method will be referred to as FOM.

Figures 1-3 plot log||r|| versus J. Since we are interested in the deflated
solution, we have chosen to plot the norm of the residual corresponding to
the deflated solution. As the value of J increases, the linear systems become
more ill-conditioned, with the smallest singular value of each matrix
approximately equal to 1077, The effect of the near singularity of the linear
systems on Method 1 is apparent as the plots show the norm of the residual
increasing as the linear system becomes more ill-conditioned. This is to be

10*

101 - —{}==  FOM
w——O—  FOMOP
10°4 —®— FOMLSQ
—&~ FOMQRI.

1071
102
Residual 493

107
10°
196?____—0\0____——»’——@.‘6, '
107+ T T . . r
1 2 3 4 5 6 7
J

Fig. 2. Norm of the residual, Problem 2.
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10°
= FOM
—C— FOMOP
10 ~—u— FOMLSQ
w—ir—  FOMQRI !
10
Residual
107
1074 3
10°5+ T T T T v |
1 2 3 4 5 6 7

J

Fig. 3. Norm of the residual, Problem 3.

expected, as the error in the component corresponding to the smallest
singular values tends to contaminate the rest of the solution. Method 2,
FOMOP, is clearly the best method in terms of producing the smallest
residuals. Method 3, FOMLSQ, was disappointing in that the norm of the
residual was consistently worse than the other methods. Method 4,
FOMOQRI, was inconsistent in this set of problems. In Problems 1 and 3,
FOMQRI was almost as good as FOMOP. However in Problem 2 the
method performed much worse.

The question of extending these methods to null spaces of higher
dimensions is also of interest. In this respect, FOMLSQ can be easily
extended while the other methods would require some extra work. In fact,
the ease with which FOMLSQ can be extended to solving systems which
have several small singular values is perhaps the only redeeming factor of
this method. Figures 4-6 illustrate the effect of solving the same systems of

10"’

10"

10°%4

Restidual
10"

10°%¢
=D FOMLSG

—— EoL S0
< FOMLSG wi

10°* T r v r T
1 2 3 4 5 6 7
J

Fig. 4. Effect of truncation on FOMLSQ, Problem 1.
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10’
100 p
10-1.
10°2]
1034 =—{}= FOMLSQ .
Residual T =0~ FOMLSQ w/o Truncation

10-4.

10°°

107%

1077 T v
1 2 3

£y
(4]
-]
~

Fig. 5. Effect of truncation on FOMLSQ, Problem 2.

Problems 1-3 using both a truncated least-squares approach and simply
solving the system using a full least-square problem. It can be seen that the
two curves usually intersect between J =2 and J = 3, which corresponds to
#(A)=1000. This implies that using FOMLSQ with a properly chosen
tolerance would perform better than always solving the truncated least-
squares problem. Fortunately, this is the case of interest. This approach
would still not be as good as using FOMOP, but it has the advantage that
it is easier to extend to null spaces with dimension greater than 1, whereas
extending FOMOP to handle several small singular values would require
extra work.

Further experiments remain to be done. It is not clear which deflated
solution is best in terms of the norm of the error. In fact, there are many

10°

107"
[

10-2.
Residual

={F— FOMLSQ
=—O-~ FOMLSQ w/o Truncation

103
1 2 3 4 5 6 7
J

Fig. 6. Effect of truncation on FOMLSQ, Problem 3.
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definitions of the deflated solution, and the choice of the deflated solution
greatly alters the results. That is one reason we have chosen to work with
the norm of the residual. Another possibility lies in solving the upper
Hessenberg system by using the singular-value decomposition. Although
this may seem like too much work at first glance, the problems we are
dealing with have the property that one matrix-vector multiplication is very
expensive. In this context, computing the SVD for a small upper Hessenberg
matrix would be insignificant. This approach also has the added attraction
that, like the FOMLSQ method, it is easily extended to null spaces of
dimension greater than 1. This research will be the subject of a later report.

References

1. ALLGOWER, E., and GEORG, K., Simplicial and Continuation Methods for
Approximating Fixed Points and Solutions to Systems of Equations, STAM Review,
Vol. 22, pp. 28-85, 1980.

2. CHAN, T. F., Newton-Like Pseudo-Arclength Methods for Computing Simple
Turning Points, SIAM Journal on Scientific and Statistical Computing, Vol. 5,
pp- 135-148, 1984.

3. GILL, P. E., MURRAY, W., and WRIGHT, M., Practical Optimization, Academic
Press, New York, New York, 1979.

4. FUNDERLIC, R. E., and MANKIN, J. B., Solution of Homogeneous Systems of
Linear Equations Arising from Compartmental Models, SIAM Journal on Scien-
tific and Statistical Computing, Vol. 2, pp. 375-383, 1981.

5. STEWART, G. W., Computable Error Bounds for Aggregated Markov Chains,
Computer Science Technical Report 901, University of Maryland, 1980.

6. SYMES, W. W., Stability Properties for the Velocity Inversion Problem, Paper
Presented at the SEG/SIAM/SPE Symposium, Houston, Texas, 1985.

7. DENNIS, J. E., and SCHNABEL, R. B., Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, New
Jersey, 1983.

8. CHAN, T. F., Deflated Decomposition of Solutions of Nearly Singular Systems,
SIAM Journal on Numerical Analysis, Vol. 21, pp. 738-754, 1984.

9. CHAN, T. F., Deflation Techniques and Block-Elimination Algorithms for Solving
Bordered Singular Systems, SIAM Journal on Scientific and Statistical Comput-
ing, Vol. 5, pp. 121-134, 1984.

10. STEWART, G. W., On the Implicit Deflation of Nearly Singular Systems of Linear

Equations, SIAM Journal on Numerical Analysis, Vol. 2, pp. 136-140, 1981.

CHaAN, T. F,, and SAAD, Y., Deflated Lanczos Procedures for Solving Nearly

Singular Systems, Computer Science Report YALEU/DCS/RR-403, Yale Uni-

versity, 1985.

12. SAAD, Y., Krylov Subspace Methods for Solving Large Unsymmetric Linear
Systems, Mathematics of Computation, Vol. 37, pp. 105-126, 1981.

—
—t



13.

14.

15.

16.

17.

18.

19.

JOTA: VOL. 72, NO. 3, MARCH 1992 457

ARNOLDI, W. E., The Principle of Minimized Iteration in the Solution of the
Matrix Eigenvalue Problem, Quarterly of Applied Mathematics, Vol. 9, pp. 17-29,
1951.

SAAD, Y., and SCHULTZ, M. H., GMRES: A Generalized Minimal Residual
Algorithm for Solving Nonsymmetric Linear Systems, SIAM Journal on S¢ientific
and Statistical Computing, Vol. 7, pp. 856-869, 1986.

LANCZzos, C., An Iteration Method for the Solution of the Eigenvalue Problem
of Linear Differential and Integral Operators, Journal of Research of the National
Bureau of Standards, Vol. 45, pp. 255-282, 1950.

WILKINSON, J. H., The Algebraic Eigenvalue Problem, Oxford University Press,
London, England, 1965.

GOLUB, G., and VAN LoAN, C., Matrix Computations, Johns Hopkins Univer-
sity Press, Baltimore, Maryland, 1983.

DONGARRA, J. J., BUNCcH, J. R., MOLER, C. B., and STEWART, G. W,,
LINPACK Users’ Guide, SIAM Press, Philadelphia, Pennsylvania, 1984.
CHAN, T. F., Rank Revealing QR Factorizations, Computer Science Report
YALEU/DCS/RR-398, Yale University, 1985.



